3.1066 \(\int \frac{1}{x^3 (2-3 x^2)^{3/4} (4-3 x^2)} \, dx\)

Optimal. Leaf size=215 \[ -\frac{\sqrt [4]{2-3 x^2}}{16 x^2}+\frac{3 \log \left (\sqrt{2-3 x^2}-2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2}\right )}{64 \sqrt [4]{2}}-\frac{3 \log \left (\sqrt{2-3 x^2}+2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2}\right )}{64 \sqrt [4]{2}}-\frac{15 \tan ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}}-\frac{3 \tan ^{-1}\left (\sqrt [4]{4-6 x^2}+1\right )}{32 \sqrt [4]{2}}+\frac{3 \tan ^{-1}\left (1-\sqrt [4]{2} \sqrt [4]{2-3 x^2}\right )}{32 \sqrt [4]{2}}-\frac{15 \tanh ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}} \]

[Out]

-(2 - 3*x^2)^(1/4)/(16*x^2) - (15*ArcTan[(2 - 3*x^2)^(1/4)/2^(1/4)])/(32*2^(3/4)) - (3*ArcTan[1 + (4 - 6*x^2)^
(1/4)])/(32*2^(1/4)) + (3*ArcTan[1 - 2^(1/4)*(2 - 3*x^2)^(1/4)])/(32*2^(1/4)) - (15*ArcTanh[(2 - 3*x^2)^(1/4)/
2^(1/4)])/(32*2^(3/4)) + (3*Log[Sqrt[2] - 2^(3/4)*(2 - 3*x^2)^(1/4) + Sqrt[2 - 3*x^2]])/(64*2^(1/4)) - (3*Log[
Sqrt[2] + 2^(3/4)*(2 - 3*x^2)^(1/4) + Sqrt[2 - 3*x^2]])/(64*2^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.240897, antiderivative size = 215, normalized size of antiderivative = 1., number of steps used = 24, number of rules used = 14, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.583, Rules used = {443, 266, 51, 63, 212, 206, 203, 444, 211, 1165, 628, 1162, 617, 204} \[ -\frac{\sqrt [4]{2-3 x^2}}{16 x^2}+\frac{3 \log \left (\sqrt{2-3 x^2}-2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2}\right )}{64 \sqrt [4]{2}}-\frac{3 \log \left (\sqrt{2-3 x^2}+2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2}\right )}{64 \sqrt [4]{2}}-\frac{15 \tan ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}}-\frac{3 \tan ^{-1}\left (\sqrt [4]{4-6 x^2}+1\right )}{32 \sqrt [4]{2}}+\frac{3 \tan ^{-1}\left (1-\sqrt [4]{2} \sqrt [4]{2-3 x^2}\right )}{32 \sqrt [4]{2}}-\frac{15 \tanh ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(2 - 3*x^2)^(3/4)*(4 - 3*x^2)),x]

[Out]

-(2 - 3*x^2)^(1/4)/(16*x^2) - (15*ArcTan[(2 - 3*x^2)^(1/4)/2^(1/4)])/(32*2^(3/4)) - (3*ArcTan[1 + (4 - 6*x^2)^
(1/4)])/(32*2^(1/4)) + (3*ArcTan[1 - 2^(1/4)*(2 - 3*x^2)^(1/4)])/(32*2^(1/4)) - (15*ArcTanh[(2 - 3*x^2)^(1/4)/
2^(1/4)])/(32*2^(3/4)) + (3*Log[Sqrt[2] - 2^(3/4)*(2 - 3*x^2)^(1/4) + Sqrt[2 - 3*x^2]])/(64*2^(1/4)) - (3*Log[
Sqrt[2] + 2^(3/4)*(2 - 3*x^2)^(1/4) + Sqrt[2 - 3*x^2]])/(64*2^(1/4))

Rule 443

Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegrand[x^m/((a +
b*x^2)^(3/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && IntegerQ[m] && (PosQ[a]
|| IntegerQ[m/2])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^3 \left (2-3 x^2\right )^{3/4} \left (4-3 x^2\right )} \, dx &=\int \left (\frac{1}{4 x^3 \left (2-3 x^2\right )^{3/4}}+\frac{3}{16 x \left (2-3 x^2\right )^{3/4}}-\frac{9 x}{16 \left (2-3 x^2\right )^{3/4} \left (-4+3 x^2\right )}\right ) \, dx\\ &=\frac{3}{16} \int \frac{1}{x \left (2-3 x^2\right )^{3/4}} \, dx+\frac{1}{4} \int \frac{1}{x^3 \left (2-3 x^2\right )^{3/4}} \, dx-\frac{9}{16} \int \frac{x}{\left (2-3 x^2\right )^{3/4} \left (-4+3 x^2\right )} \, dx\\ &=\frac{3}{32} \operatorname{Subst}\left (\int \frac{1}{(2-3 x)^{3/4} x} \, dx,x,x^2\right )+\frac{1}{8} \operatorname{Subst}\left (\int \frac{1}{(2-3 x)^{3/4} x^2} \, dx,x,x^2\right )-\frac{9}{32} \operatorname{Subst}\left (\int \frac{1}{(2-3 x)^{3/4} (-4+3 x)} \, dx,x,x^2\right )\\ &=-\frac{\sqrt [4]{2-3 x^2}}{16 x^2}-\frac{1}{8} \operatorname{Subst}\left (\int \frac{1}{\frac{2}{3}-\frac{x^4}{3}} \, dx,x,\sqrt [4]{2-3 x^2}\right )+\frac{9}{64} \operatorname{Subst}\left (\int \frac{1}{(2-3 x)^{3/4} x} \, dx,x,x^2\right )+\frac{3}{8} \operatorname{Subst}\left (\int \frac{1}{-2-x^4} \, dx,x,\sqrt [4]{2-3 x^2}\right )\\ &=-\frac{\sqrt [4]{2-3 x^2}}{16 x^2}-\frac{3}{16} \operatorname{Subst}\left (\int \frac{1}{\frac{2}{3}-\frac{x^4}{3}} \, dx,x,\sqrt [4]{2-3 x^2}\right )-\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2}-x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{16 \sqrt{2}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2}+x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{16 \sqrt{2}}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{2}-x^2}{-2-x^4} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{16 \sqrt{2}}+\frac{3 \operatorname{Subst}\left (\int \frac{\sqrt{2}+x^2}{-2-x^4} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{16 \sqrt{2}}\\ &=-\frac{\sqrt [4]{2-3 x^2}}{16 x^2}-\frac{3 \tan ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{16\ 2^{3/4}}-\frac{3 \tanh ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{16\ 2^{3/4}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2}-2^{3/4} x+x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{32 \sqrt{2}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2}+2^{3/4} x+x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{32 \sqrt{2}}-\frac{9 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2}-x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{32 \sqrt{2}}-\frac{9 \operatorname{Subst}\left (\int \frac{1}{\sqrt{2}+x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{32 \sqrt{2}}+\frac{3 \operatorname{Subst}\left (\int \frac{2^{3/4}+2 x}{-\sqrt{2}-2^{3/4} x-x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{64 \sqrt [4]{2}}+\frac{3 \operatorname{Subst}\left (\int \frac{2^{3/4}-2 x}{-\sqrt{2}+2^{3/4} x-x^2} \, dx,x,\sqrt [4]{2-3 x^2}\right )}{64 \sqrt [4]{2}}\\ &=-\frac{\sqrt [4]{2-3 x^2}}{16 x^2}-\frac{15 \tan ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}}-\frac{15 \tanh ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}}+\frac{3 \log \left (\sqrt{2}-2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2-3 x^2}\right )}{64 \sqrt [4]{2}}-\frac{3 \log \left (\sqrt{2}+2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2-3 x^2}\right )}{64 \sqrt [4]{2}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt [4]{4-6 x^2}\right )}{32 \sqrt [4]{2}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt [4]{4-6 x^2}\right )}{32 \sqrt [4]{2}}\\ &=-\frac{\sqrt [4]{2-3 x^2}}{16 x^2}-\frac{15 \tan ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}}-\frac{3 \tan ^{-1}\left (1+\sqrt [4]{4-6 x^2}\right )}{32 \sqrt [4]{2}}+\frac{3 \tan ^{-1}\left (1-\sqrt [4]{2} \sqrt [4]{2-3 x^2}\right )}{32 \sqrt [4]{2}}-\frac{15 \tanh ^{-1}\left (\frac{\sqrt [4]{2-3 x^2}}{\sqrt [4]{2}}\right )}{32\ 2^{3/4}}+\frac{3 \log \left (\sqrt{2}-2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2-3 x^2}\right )}{64 \sqrt [4]{2}}-\frac{3 \log \left (\sqrt{2}+2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2-3 x^2}\right )}{64 \sqrt [4]{2}}\\ \end{align*}

Mathematica [A]  time = 0.0780583, size = 210, normalized size = 0.98 \[ -\frac{8 \sqrt [4]{2-3 x^2}-3\ 2^{3/4} x^2 \log \left (\sqrt{2-3 x^2}-2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2}\right )+3\ 2^{3/4} x^2 \log \left (\sqrt{2-3 x^2}+2^{3/4} \sqrt [4]{2-3 x^2}+\sqrt{2}\right )+30 \sqrt [4]{2} x^2 \tan ^{-1}\left (\sqrt [4]{1-\frac{3 x^2}{2}}\right )-6\ 2^{3/4} x^2 \tan ^{-1}\left (1-\sqrt [4]{4-6 x^2}\right )+6\ 2^{3/4} x^2 \tan ^{-1}\left (\sqrt [4]{4-6 x^2}+1\right )+30 \sqrt [4]{2} x^2 \tanh ^{-1}\left (\sqrt [4]{1-\frac{3 x^2}{2}}\right )}{128 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(2 - 3*x^2)^(3/4)*(4 - 3*x^2)),x]

[Out]

-(8*(2 - 3*x^2)^(1/4) + 30*2^(1/4)*x^2*ArcTan[(1 - (3*x^2)/2)^(1/4)] - 6*2^(3/4)*x^2*ArcTan[1 - (4 - 6*x^2)^(1
/4)] + 6*2^(3/4)*x^2*ArcTan[1 + (4 - 6*x^2)^(1/4)] + 30*2^(1/4)*x^2*ArcTanh[(1 - (3*x^2)/2)^(1/4)] - 3*2^(3/4)
*x^2*Log[Sqrt[2] - 2^(3/4)*(2 - 3*x^2)^(1/4) + Sqrt[2 - 3*x^2]] + 3*2^(3/4)*x^2*Log[Sqrt[2] + 2^(3/4)*(2 - 3*x
^2)^(1/4) + Sqrt[2 - 3*x^2]])/(128*x^2)

________________________________________________________________________________________

Maple [F]  time = 0.057, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{3} \left ( -3\,{x}^{2}+4 \right ) } \left ( -3\,{x}^{2}+2 \right ) ^{-{\frac{3}{4}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(-3*x^2+2)^(3/4)/(-3*x^2+4),x)

[Out]

int(1/x^3/(-3*x^2+2)^(3/4)/(-3*x^2+4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{1}{{\left (3 \, x^{2} - 4\right )}{\left (-3 \, x^{2} + 2\right )}^{\frac{3}{4}} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(-3*x^2+2)^(3/4)/(-3*x^2+4),x, algorithm="maxima")

[Out]

-integrate(1/((3*x^2 - 4)*(-3*x^2 + 2)^(3/4)*x^3), x)

________________________________________________________________________________________

Fricas [B]  time = 1.81365, size = 1081, normalized size = 5.03 \begin{align*} \frac{12 \cdot 8^{\frac{3}{4}} \sqrt{2} x^{2} \arctan \left (\frac{1}{4} \cdot 8^{\frac{1}{4}} \sqrt{2} \sqrt{8^{\frac{3}{4}} \sqrt{2}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 4 \, \sqrt{2} + 4 \, \sqrt{-3 \, x^{2} + 2}} - \frac{1}{2} \cdot 8^{\frac{1}{4}} \sqrt{2}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} - 1\right ) + 12 \cdot 8^{\frac{3}{4}} \sqrt{2} x^{2} \arctan \left (\frac{1}{16} \cdot 8^{\frac{1}{4}} \sqrt{2} \sqrt{-16 \cdot 8^{\frac{3}{4}} \sqrt{2}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 64 \, \sqrt{2} + 64 \, \sqrt{-3 \, x^{2} + 2}} - \frac{1}{2} \cdot 8^{\frac{1}{4}} \sqrt{2}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 1\right ) - 3 \cdot 8^{\frac{3}{4}} \sqrt{2} x^{2} \log \left (16 \cdot 8^{\frac{3}{4}} \sqrt{2}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 64 \, \sqrt{2} + 64 \, \sqrt{-3 \, x^{2} + 2}\right ) + 3 \cdot 8^{\frac{3}{4}} \sqrt{2} x^{2} \log \left (-16 \cdot 8^{\frac{3}{4}} \sqrt{2}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + 64 \, \sqrt{2} + 64 \, \sqrt{-3 \, x^{2} + 2}\right ) + 60 \cdot 8^{\frac{3}{4}} x^{2} \arctan \left (\frac{1}{2} \cdot 8^{\frac{1}{4}} \sqrt{\sqrt{2} + \sqrt{-3 \, x^{2} + 2}} - \frac{1}{2} \cdot 8^{\frac{1}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right ) - 15 \cdot 8^{\frac{3}{4}} x^{2} \log \left (8^{\frac{3}{4}} + 4 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right ) + 15 \cdot 8^{\frac{3}{4}} x^{2} \log \left (-8^{\frac{3}{4}} + 4 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right ) - 32 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}}{512 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(-3*x^2+2)^(3/4)/(-3*x^2+4),x, algorithm="fricas")

[Out]

1/512*(12*8^(3/4)*sqrt(2)*x^2*arctan(1/4*8^(1/4)*sqrt(2)*sqrt(8^(3/4)*sqrt(2)*(-3*x^2 + 2)^(1/4) + 4*sqrt(2) +
 4*sqrt(-3*x^2 + 2)) - 1/2*8^(1/4)*sqrt(2)*(-3*x^2 + 2)^(1/4) - 1) + 12*8^(3/4)*sqrt(2)*x^2*arctan(1/16*8^(1/4
)*sqrt(2)*sqrt(-16*8^(3/4)*sqrt(2)*(-3*x^2 + 2)^(1/4) + 64*sqrt(2) + 64*sqrt(-3*x^2 + 2)) - 1/2*8^(1/4)*sqrt(2
)*(-3*x^2 + 2)^(1/4) + 1) - 3*8^(3/4)*sqrt(2)*x^2*log(16*8^(3/4)*sqrt(2)*(-3*x^2 + 2)^(1/4) + 64*sqrt(2) + 64*
sqrt(-3*x^2 + 2)) + 3*8^(3/4)*sqrt(2)*x^2*log(-16*8^(3/4)*sqrt(2)*(-3*x^2 + 2)^(1/4) + 64*sqrt(2) + 64*sqrt(-3
*x^2 + 2)) + 60*8^(3/4)*x^2*arctan(1/2*8^(1/4)*sqrt(sqrt(2) + sqrt(-3*x^2 + 2)) - 1/2*8^(1/4)*(-3*x^2 + 2)^(1/
4)) - 15*8^(3/4)*x^2*log(8^(3/4) + 4*(-3*x^2 + 2)^(1/4)) + 15*8^(3/4)*x^2*log(-8^(3/4) + 4*(-3*x^2 + 2)^(1/4))
 - 32*(-3*x^2 + 2)^(1/4))/x^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{1}{3 x^{5} \left (2 - 3 x^{2}\right )^{\frac{3}{4}} - 4 x^{3} \left (2 - 3 x^{2}\right )^{\frac{3}{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(-3*x**2+2)**(3/4)/(-3*x**2+4),x)

[Out]

-Integral(1/(3*x**5*(2 - 3*x**2)**(3/4) - 4*x**3*(2 - 3*x**2)**(3/4)), x)

________________________________________________________________________________________

Giac [A]  time = 1.26565, size = 259, normalized size = 1.2 \begin{align*} -\frac{3}{64} \cdot 2^{\frac{3}{4}} \arctan \left (\frac{1}{2} \cdot 2^{\frac{1}{4}}{\left (2^{\frac{3}{4}} + 2 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right )}\right ) - \frac{3}{64} \cdot 2^{\frac{3}{4}} \arctan \left (-\frac{1}{2} \cdot 2^{\frac{1}{4}}{\left (2^{\frac{3}{4}} - 2 \,{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right )}\right ) - \frac{3}{128} \cdot 2^{\frac{3}{4}} \log \left (2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}\right ) + \frac{3}{128} \cdot 2^{\frac{3}{4}} \log \left (-2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}} + \sqrt{2} + \sqrt{-3 \, x^{2} + 2}\right ) - \frac{15}{64} \cdot 2^{\frac{1}{4}} \arctan \left (\frac{1}{2} \cdot 2^{\frac{3}{4}}{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right ) - \frac{15}{128} \cdot 2^{\frac{1}{4}} \log \left (2^{\frac{1}{4}} +{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right ) + \frac{15}{128} \cdot 2^{\frac{1}{4}} \log \left (2^{\frac{1}{4}} -{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}\right ) - \frac{{\left (-3 \, x^{2} + 2\right )}^{\frac{1}{4}}}{16 \, x^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(-3*x^2+2)^(3/4)/(-3*x^2+4),x, algorithm="giac")

[Out]

-3/64*2^(3/4)*arctan(1/2*2^(1/4)*(2^(3/4) + 2*(-3*x^2 + 2)^(1/4))) - 3/64*2^(3/4)*arctan(-1/2*2^(1/4)*(2^(3/4)
 - 2*(-3*x^2 + 2)^(1/4))) - 3/128*2^(3/4)*log(2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2)) + 3/128
*2^(3/4)*log(-2^(3/4)*(-3*x^2 + 2)^(1/4) + sqrt(2) + sqrt(-3*x^2 + 2)) - 15/64*2^(1/4)*arctan(1/2*2^(3/4)*(-3*
x^2 + 2)^(1/4)) - 15/128*2^(1/4)*log(2^(1/4) + (-3*x^2 + 2)^(1/4)) + 15/128*2^(1/4)*log(2^(1/4) - (-3*x^2 + 2)
^(1/4)) - 1/16*(-3*x^2 + 2)^(1/4)/x^2